Steven Bedrick

The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era

Andrew Wen, Huan He, Sunyang Fu, Sijia Liu, Kurt Miller, Liwei Wang, Kirk E Roberts, Steven D Bedrick, William R Hersh, Hongfang Liu
NPJ Digit Med, Jul 2023


Clinical phenotyping is often a foundational requirement for obtaining datasets necessary for the development of digital health applications. Traditionally done via manual abstraction, this task is often a bottleneck in development due to time and cost requirements, therefore raising significant interest in accomplishing this task via in-silico means. Nevertheless, current in-silico phenotyping development tends to be focused on a single phenotyping task resulting in a dearth of reusable tools supporting cross-task generalizable in-silico phenotyping. In addition, in-silico phenotyping remains largely inaccessible for a substantial portion of potentially interested users. Here, we highlight the barriers to the usage of in-silico phenotyping and potential solutions in the form of a framework of several desiderata as observed during our implementation of such tasks. In addition, we introduce an example implementation of said framework as a software application, with a focus on ease of adoption, cross-task reusability, and facilitating the clinical phenotyping algorithm development process.

Back to List